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Abstract

LEARNING BASED ULTRASOUND IMAGE SUPER-RESOLUTION

Ozan Karaali
Supervisor: Prof. Dr. Nassir Navab

B-mode ultrasound imaging is commonly used by physicians and clinicians for diag-
nosing and treatment purposes by visualizing and quantifying anatomical structures
in an easier environment and under a relatively cheaper budget when compared to
other imaging methods. Due to the physical constraints of ultrasound imaging devices
and medium (tissue) limits, the inherent features of ultrasound and the quality of
ultrasound imaging is never optimum, particularly limited by the spatial resolution. To
overcome these limitations, image super-resolution (SR) technology may aid in clinical
medical diagnosis and therapy by improving ultrasonic imaging quality and increasing
illness diagnostic accuracy. However, the resolution degradation process of ultrasonic
imaging in actual scenarios is unpredictable due to the changes in sensor equipment or
transmission medium. In this thesis, several image super-resolution (SR) technologies,
such as previous works in ultrasound B-mode image SR methods and then natural
image SR methods and degradation aware SR methods, will be investigated, and an
upgrade for image super-resolution (SR) technology by utilizing deblurring networks to
fine-tune the degradation on the ultrasound images be introduced to be employed with
B-mode ultrasound imaging, additionally discovering ways to utilize SOTA natural im-
age SR methods in ultrasound images will be investigated under different degradation
scenarios.

Keywords: Ultrasound Image, Super-Resolution, Deep Learning, Deblurring, De-
noising, Image Enhancement

iv



Contents

Acknowledgments iii
Abstract iv
1 Introduction 1
1.1 Ultrasound Imaging . . ... ... .. ... .. ... ... ... ... 1
1.2 Image Super-Resolution . .. ... ... ... ... .. ........... 3
2 Related Work 5
2.1 Super-Resolution . ... ...... ... ... . ... ... . ... ... 5
211 Interpolation . .................... ... ... ... 5
2.1.2 Natural Image Super-Resolution Methods . . . . ... ... ... 6
2.1.3 Degradation-Aware Super-Resolution Methods . . . .. ... .. 12
2.2 Ultrasound Image Super-Resolution . . . ... ... ............ 16
221 Deep Convolutional Neural Network for Ultrasound Super-Resolution 16

2.2.2  Perception Consistency Ultrasound Image Super-Resolution via
Self-Supervised CycleGAN . . ... .............. ... 19

2.2.3 DProgressive Residual Learning with Memory Upgrade for Ultra-
sound Image Blind Super-Resolution . . . ... ... ... .... 22
3 Dataset 25
3.1 DataPreprocessing . . . ... ... ... ... ... ... ... 25
4 Method Overview 30
5 Network Architecture 32
51 DeblurGAN . . ... ... .. . 32
52 DeblurGANV2 . . . . . .. e 36
5.3 Nonlinear Activation Free Network for Image Restoration . . . . .. .. 37
54 HAT-NAFMixture . .. ... ... .. ... .. ... ... ....... 43
6 Experiments & Results 44
6.1 Experiments . . ... ... ... ... ... .. o 44
6.1.1 ESRGAN . . .. ... . . 44
612 EDSR . ... ... . 44
613 SwinlR . . . ... .o 45




Contents

6.1.4 HAT and NAF-HAT Mixture . . . . . . . . .. . ... .... 45

6.1.5 PRLMU . . . . . e 45

6.1.6 DeblurGANV2 . . . . . . e 45

6.1.7 NAFNet . . . . . e 46

6.2 Evaluation Metrics . . . . . . . . . e 46
6.3 Results . . . . . . . . e, 47
6.4 Achieving Real Super-Resolution . . . . . ... ............... 47
6.5 Discussion . . . . . . . . e 56

7 Conclusion 60
Abbreviations 62
List of Figures 65
List of Tables 67
Bibliography 68

vi



1 Introduction

Ultrasound imaging has become an increasingly popular diagnostic tool due to its
non-invasive and real-time capabilities. However, the quality of ultrasound images is
often limited by the physical constraints of the imaging system, such as the limited
resolution and the presence of noise. The image super resolution (SR) technology can
improve the quality of ultrasound images, which helps to overcome these limitations.

1.1 Ultrasound Imaging

Ultrasound imaging is a non-invasive imaging technology that produces images of
the body’s internal structures by using high-frequency sound waves. The ultrasound
imaging system comprises a transducer, a signal processing unit, and a display unit.
[RL17] The transducer generates and receives the ultrasound waves, which are then
processed by the signal processing unit to create the final ultrasound image.

Ultrasound waves are high-frequency sound waves that exceed the human hearing
range. In ultrasound imaging, typically sound waves with a frequency range of 2-
15 MHz are used, but not limited to that, for some specialized imaging applications,
frequencies as high as 60 MHz, also investigated [RL17]. The speed of sound determines
the wavelength of the ultrasound waves in the medium and the frequency of the waves,
according to the relationship

A=

where lambda is the wavelength, c is the speed of sound, and f is the frequency of the
waves [RL17].

As shown in Figure 1.1, the transducer generates the ultrasound waves and prop-
agates them through the body. When the ultrasound waves encounter an interface
between two different media with different acoustic properties, wave components are
reflected in the transducer, while others are transmitted further into the body. Then,
the reflected waves are used to create the ultrasound image [RL17].

There are fundamentally four imaging modes for ultrasound imaging [RL17]:

¢ amplitude-mode (A-mode) ultrasound records the position and strength of a
reflecting structure.

¢ motion-mode (M-mode) ultrasound shows echo amplitude and the position of
moving reflectors.
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Figure 1.1: A sound wave is a series of alternating pressure waves producing compres-
sions and rarefactions on the conducting medium. [RL17]

* brightness-mode (B-mode) ultrasound shows 2D real-time, grayscale images
where brightness indicates reflecting signals of differing amplitude.

¢ Doppler mode ultrasound uses the Doppler effect to measure and visualize blood
flow.

Figure 1.2: Ultrasound pulses delivered down a series of successive scan lines combine
to create a 2D real-time image. Each scan line adds to the image, creating a
2D representation of the echos from the item being scanned. [RL17]

This thesis focuses on the B-mode ultrasound imaging, which is the most commonly
used imaging mode in clinical practice. The B-mode ultrasound imaging is a 2D real-
time, grayscale imaging mode where the brightness of the image indicates the strength
of the reflected signals built by a series of successive scan-lines in an array as shown in
Figure 1.2. The B-mode ultrasound imaging is used to visualize the internal structures
of the body, such as the heart, blood vessels, and the liver. The B-mode ultrasound
imaging is also used to diagnose diseases and monitor their progression of them, such
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as cancer, heart disease, and liver disease [RL17].

In the B-mode ultrasound imaging, the image is affected by various factors such
as diffraction, attenuation, and aberrations, which cause blurring, reduced resolution,
and low quality of the image. To model this blurring effect, in ultrasound imaging,
a concept called the point spread function (PSF) is used. The PSF is a mathematical
function that describes how a point source of ultrasound waves is spread out in the
image due to the blurring effect of the imaging system. The PSF is important because
it determines the resolution and quality of the final image. A sharper PSF results in a
higher resolution image, while a broader PSF results in a lower resolution image.

The PSF is typically assumed to be a Gaussian function in ultrasound imaging
due to its simplicity and effectiveness in modeling the blurring effect. The Gaussian
PSF assumes that the blurring effect is symmetric and smoothly varying, which is a
reasonable assumption for many ultrasound imaging applications [Zha+15].

1.2 Image Super-Resolution

Image SR is a process of enhancing the resolution of an image beyond what is physically
or optically possible with the imaging system to improve the image’s visual quality.
The SR technique involves the reconstruction of a high resolution (HR) image from a
low resolution (LR) image. To do that reconstruction, a function f should be realized
to map the LR image I;r to the HR image Iyr, where Isg = f(Irr), which Isg should
be as close as possible to Iyg.

B-mode ultrasound imaging displays 2D anatomical sections of human tissues as a
grayscale image. High-resolution ultrasound images are helpful in observing the shape
and contour to judge if there is a lesion on the tissue. However, the resolution of the
ultrasound images is limited by the physical constraints of the imaging system; due
to the diffraction, attenuation, and aberrations, it is difficult to obtain high-resolution
ultrasound images, especially for deep tissues.

Where it is not feasible to obtain high-resolution ultrasound images, the SR technique
can be employed to improve the quality of the ultrasound images.

The general resolution degradation model for the B-mode ultrasound imaging can
be shown as follows [Liu+22]:

y = (xxk) |s +n (1.1)

where x is the high-resolution image and vy is the low-resolution image. k is the point
spread function (PSF), which is modeled as Gaussian blur kernel convolved on x, |s
is the downsampling operator with the factor of s, and # is the noise. Since B-mode
ultrasound imaging is similar to natural images, the general resolution degradation
model can also be applied to B-mode ultrasound imaging. In addition to the general
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resolution degradation model, ultrasonic imaging involves axial and lateral spatial
resolution degradation. Even though the axial and lateral resolution degradations in ul-
trasound imaging are different, for convenience, they can be modeled with the uniform
Gaussian blur kernel and the same downsampling operations for both dimensions as
the general resolution degradation model since they will all lead to the degradation of
the image quality [Liu+22]. Finally, authors of the "Progressive Residual Learning with
Memory Upgrade for Ultrasound Image Blind Super-resolution" [Liu+22] state that
the end-to-end deep SR methods based on bicubic downsampling are not applicable
because the degraded blur kernel is generally unknown in actual ultrasound imag-
ing process. Therefore Blind SR is more suitable for ultrasound imaging due to the
unknown blur kernel.

There exist two different approaches for ultrasound super-resolution; the first one
is called front-end mode SR, which aims to improve the image during the imaging
process by changing the imaging conditions or the equipment, such as beam-forming or
increasing the frequency while reducing the diffusion angle. In contrast, the second one
is named back-end (soft) mode, which post-processes the obtained ultrasound image
to improve its resolution [Liu+22]. This thesis aims to investigate the effectiveness
of existing deep learning approaches for ultrasound super-resolution by applying to
B-mode images to create soft mode super-resolution and compare their performance in
terms of image quality and robustness to noise, then propose different approaches to
improve the performance of existing deep learning approaches for ultrasound super-
resolution. The results of this study might provide valuable insights for improving
the resolution and quality of ultrasound images, which could ultimately enhance the
accuracy and reliability of ultrasound-based diagnosis and treatment.




2 Related Work

Super-resolution has become a hot topic in image processing in recent years, with
applications in surveillance, remote sensing, and medical imaging, among other fields.
In order to improve the resolution and quality of low-resolution photos, super-resolution
creates high-resolution versions of the same image. This reconstruction is accomplished
using various methods, including interpolation, reconstruction, and deep learning-
based methods.

In this section, the recent advancements in super-resolution techniques, focusing on
deep learning-based approaches, will be reviewed. The section is divided into two parts:
single image super-resolution and blind super-resolution. The first part will discuss the
various deep learning-based approaches for single-image super-resolution. Then, in
the second part, the various deep learning-based approaches for blind super-resolution
will be discussed.

2.1 Super-Resolution

Like the natural image SR, earliest approaches such as Deep Convolutional Neu-
ral Network for Ultrasound Super Resolution (DECUSR) assumed image resolution
degradation as bicubic sampling. Therefore, this section discusses different deep
learning-based methods to reconstruct SR images with known blur kernel.

2.1.1 Interpolation

Interpolation is the process of estimating the values of a function at points between
the known data points. In the context of super-resolution, interpolation is used to
estimate the values of the high-resolution image at points between the known data
points of the low-resolution image. In the Figure 2.1, the 4 * 4 image is interpolated to
a 16 * 16 image using different interpolation algorithms. The interpolation algorithms
are described in the following subsections.

Nearest Neigbor

This method is the most straightforward interpolation technique, where the new pixel
value is estimated by replicating the value of the nearest neighboring pixel in the
original image. This method is fast to compute and produces blocky results. Therefore
it can result in jagged edges and aliasing artifacts.
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Figure 2.1: Different types of interpolation algorithms rendering upscaled images of
the original 4 x 4 image

Bilinear Interpolation

This method is an extension of the nearest neighbor method. It uses the four nearest
neighboring pixels to estimate the value of the new pixel. This method produces
smoother results than the nearest neighbor method but still suffers from aliasing
artifacts.

Bicubic Interpolation

This method is an extension of the bilinear interpolation method. It uses the 16 nearest
neighboring pixels (4 * 4 kernel) to estimate the value of the new pixel. This method
produces smoother and more visually appealing results than the bilinear interpolation
and nearest neighbor, but it is also more computationally expensive.

Lanczos Interpolation

Lanczos interpolation is a high-quality interpolation method that uses a windowed
sinc function to estimate the value of the new pixel based on the values of neighboring
pixels. This method produces the best results among the interpolation methods and is
the most computationally expensive.

2.1.2 Natural Image Super-Resolution Methods

This section will review the various deep learning-based approaches for natural image
super-resolution since B-mode ultrasound images are similar to natural images by
containing three channels of RGB data used to display the grayscale image of anatomical
sections and tissues in 2D.
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Enhanced Deep Residual Networks

Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR) [Lim+17]
architecture is one of the SR methods developed after the introduction of convolutional
neural network (CNN). The architecture is based on the ResNet50 architecture [He+15].
The EDSR architecture is shown in Figure 2.2. The architecture comprises a feature
extraction module, a residual block, and a reconstruction module. The feature extraction
module is a CNN extracting features from the low-resolution image. The residual block
is a CNN that is repeated multiple times to increase the depth of the network. The
reconstruction module is a CNN that reconstructs the high-resolution image from the
features extracted by the feature extraction module. The EDSR [Lim+17] architecture
is trained using the L1 loss function; meanwhile, SRResNet [Led+16] used the L2 loss
function [Led+16].

Figure 2.2: Model architecture of EDSR [Lim+17]

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
(SRGAN) [Led+16] is a SR method that uses a generative adversarial network (GAN) to
generate high-resolution images from low-resolution images. The SRGAN architecture
is shown in Figure 2.3. The architecture consists of a generator and a discriminator. The
generator is a CNN that generates high-resolution images from low-resolution images,
which is based on SRResNet. With that part, it is similar to the EDSR architecture. In
addition, what makes it different from EDSR and SRResNet is the discriminator part,
which is a CNN that classifies the generated images as real or fake. Utilizing a GAN to
generate high-resolution images from low-resolution images allows the generator to
learn the characteristics of the high-resolution images instead of directly optimizing
the loss function. The SRGAN architecture is trained using the perceptual loss function
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and adversarial loss function [Led+16].

Figure 2.3: Model architecture of SRGAN [Led+16]

In addition, an extension to the SRGAN, ESRGAN tries to extend via utilizing
Residual in Residual Dense Block (RRDB) [Wan+18] in the SRResNet-based architecture
such as shown in Figure 2.4 and a mixture of context, perceptual and adversarial losses,
so the total loss of the generator is defined as:

Liotal = £perceptual +alc+ 7]£1 (2.1)

where Loerceptual i the perceptual loss from VGG19 [SZ14], « is the weight of the
GAN loss, 7 is the weight of the L1 loss, and L is the GAN loss.

Figure 2.4: Model architecture of RRDB [Wan+18]

Swin Transformer

After the long domination of CNN based models in computer vision area in years,
especially in natural language processing (NLP), Transformer [Vas+17] has emerged
due to its use of attention mechanism to model long-range dependencies in the data.
In later stages, the exact Transformer mechanism has adapted to the computer vision
area as Vision Transformers [Dos+20] first, then to handle the difference between
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language and computer vision domains such as the scale of visual entities and the
high resolution of pixels in images compared to words in the text the Shifted Window
Transformer (Swin) is proposed. The difference between a Vision Transformer and Swin
transformer can be seen in Figure 2.5 and the whole architecture of Swin Transformer
can be seen in Figure 2.6 According to Swin Transformer’s research, by limiting
self-attention computation to non-overlapping local windows and allowing for cross-
window connection, shifted windowing approach increased efficiency [Liu+21c].

Figure 2.5: Comparison between Swin Transformer and Vision Transformer, where ViT
creates feature maps of a single low resolution and quadratic computational
complexity due to global computation of the self-attention mechanism,
Swin Transformer has hierarchical feature maps with different resolutions
and linear computational complexity due to computation of self-attention
mechanism done in each local window [Liu+21c].

Swin Transformer has also been used in SR tasks such as "Image Restoration Using
Swin Transformer (SwinlR)", with less amount of parameters, in their benchmarks,
SwinlR still achieved better peak signal-to-noise ratio (PSNR) values comparing to
EDSR [Lia+21]. In Figure 2.7, the SwinIR architecture is shown.

Hybrid Attention Transformer

In "Activating More Pixels in Image Super-Resolution Transformer" [Che+22b], Hybrid
Attention Transformer (HAT) model is proposed to combine channel attention and self-
attention schemes. In addition to that, they introduced an overlapping cross-attention
module to enhance the interaction between neighboring window features to aggregate
the cross-window information better, as shown in Figure 2.8. In Figure 2.9, the HAT
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Figure 2.6: Architecture of Swin Transformer, where it uses shifted windows as multi-
head self-attention in the blocks [Liu+21c].

Figure 2.7: Model architecture of SwinIR, where it consists of shallow feature extraction,
deep feature extraction layer with Residual Swin Transformer blocks with
skip connections and finally an HQ Image Reconstruction layer to recon-
struct SR image. [Lia+21]

10
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architecture is shown. Also, being another transformer-based model such as Swin, their
benchmarks show that HAT outperforms Swin, EDSR, and SRGAN architectures with
being one of the state-of-the-art models for natural image SR [Che+22b]. However,
the HAT model is not blind SR model, and it still lacks PSF degradation model to be
able to reconstruct various SR images from real scene ultrasound images with different
amounts of blurring.

Figure 2.8: Overlapping Cross-Attention Block, similar to Swin Transformer block, but
different in a way that generates key/value from a larger cross window
than query since it’s calculated with the overlapping window partition.
[Che+22b]

Figure 2.9: Model architecture of HAT [Che+22b]

11
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2.1.3 Degradation-Aware Super-Resolution Methods

With the assumption of the real scene ultrasound images, authors of Progressive Resid-
ual Learning with Memory Upgrade for Ultrasound Image Blind Super-Resolution
(PRLMU) state that the degradation blur process is more complex than bicubic sam-
pling, therefore it needs to be solved by knowing the fitting degradation model [Liu+22].
Degradation-aware super-resolution methods such as blind SR is a more challenging
task when compared to SR, where a low-resolution image is obtained without knowl-
edge about the degradation process. Blind super-resolution algorithms first try to
estimate the unknown blur kernel to use that information to reconstruct a HR image.

Super-Resolution Network for Multiple Degradations

Since most of the CNN based SR models assume that the degradation process is a simple
bicubic downsampling, when actual degradation does not follow that assumption, such
as in the case of ultrasound images, the SR model fails to reconstruct the HR image.
In "Super-Resolution Network for Multiple Degradations" [ZZZ17], a SR model that
can handle multiple degradation models such as downsampling, blurring, and noise is
proposed with a dimensional stretching strategy. Their aim is to learn a single model
to effectively handle multiple and spatially variant degradations while using synthetic
data to train a model with high practicability [ZZZ17]. To solve the learning of a
single model that can solve multiple degradations, the authors of Super-Resolution
Network for Multiple Degradations (SRMD) propose a dimensional stretching strategy,
where they used a single model to handle multiple degradations by stretching the
input image to a higher dimension. In addition to that, they also managed to utilize
synthetic data for the super-resolution problem, and they claimed that by choosing
a better fitting degradation model than bicubic downscaling, learned SR model can
return perceptually convincing results on actual LR images [ZZZ17].
For SRMD, the degradation model is represented as:

y = (x ¢S)®k+n (2.2)

Their degradation model assumes an anisotropic Gaussian blur kernel, zero noise,
and bicubic downsampler since dealing with blur and noise at the same time is a
challenging task where it creates a large degradation space such as shown in Figure 2.10
and there exist not enough previous works about solving the task [ZZZ17].

So to solve the following problem, the authors of SRMD [ZZZ17] propose maximum-
a-posteriori (MAP) estimation of the degradation model parameters, such that:

) 1
X = argmin = ﬁ||(x®k) bs —y|[2 + AD(x) (2.3)

where X is the function for LR image y, blur kernel k, noise level ¢, trade-off parameter
A and regularization parameter ®x. Where the non-blind MAP solution to this problem

12
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can be formulated into the following;:

x=F(y ko, A 0) (2.4)

where @ is the parameters of the MAP. Then the A can be absorbed into ¢ and final
goal will be:

x=F(y k,0;,0) (2.5)

, which is still more complex than ¥ = F(y;®) to learnable via CNN since the
three inputs y, k, 0 have different dimensions. Therefore SRMD [ZZZ17] propose the
dimensionality stretching strategy, where it vectorizes blur kernel to a p? * 1 space and
then projected onto a t dimensional space by PCA, concatenated by the noise level and
stretched to degradation maps of W * H * (t + 1).

After creating the degradation maps, the SRMD [ZZZ17] model takes the LR image
and the degradation maps as input such that W x« H x (C + t 4+ 1). Then convolution
blocks, batch normalization, and ReLU activation are applied to perform the nonlinear
mapping. Finally, a last convolution converts the image size of W * H x s2C to a single
image in the size of sW * sH * C where s is the scaler from LR to HR [ZZZ17]. The
convolutional layers number is 12, and feature maps in each layer are set to 128 [ZZZ17].
An overview of the SRMD architecture can be shown in Figure 2.11

Finally, authors [ZZZ17] claim that learning a blind SR model when blur kernel is
complex, such as when motion blur is in the LR image instead of Gaussian blur, does
not perform well and explains this phenomenon by pixel-wise averaging [Led+16]
problem where shifting the image to the left by one pixel and shifting blur kernel to
the right by one pixel yield the LR image and argues that blind SR models cannot
generalize easily to unseen degradations.

Zero Shot Super-Resolution

These methods named Zero-Shot Super-Resolution using Deep Internal Learning (ZSSR)
[SCI17] and Perception Consistency Ultrasound Images Super-Resolution via Self-
Supervised CycleGAN (USSSCSR) [Liu+21a] work with "zero-shot" principle shown in
Figure 2.12 where a model learns from the internal recurrence of information from a
single image by training an image-specific CNN.

ZSSR creates an image-specific CNN by doing augmentations on that single image
which are named "HR fathers" and then downscaled by scale factor s to obtain "LR
sons". Then this group of data is transformed by 4 rotations and vertical /horizontal
rotations, which creates 8 times more data, and finally, scaling is done gradually (for
example, for 8x scaling, scaling may be done by 2x scaling for 3 times, etc.) if scale
factors are large, to increase robustness.

ZSSR employs a fully convolutional network of 8 hidden layers consisting of 64
channels with ReLU activations with residuals between interpolated LR son and HR

13
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Figure 2.10: Different degradation levels of noise and blur kernel creates a lot of LR
images where most of the SR algorithms seek one LR to one HR mapping
due to the bicubic downsampling, which creates complexity. [ZZZ17]

Figure 2.11: Model architecture of SRMD, where it takes image and degradation maps
feed SRMD model consisting of blocks of "Conv+BN+ReLU" then creates
Subimages to a single HR image [ZZZ17]

14
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Figure 2.12: Zero-Shot is a principle based on having a single image where examples
are extracted internally from that image to learn how to synthesize SR
image from its coarser resolutions (patches) to create itself as SR image.
Where traditional SR networks learn by many pairs of LR and HR images.
[SCI17]

father. It uses L; loss with Adam [KB14] optimizer with a learning rate of 0.001 and
stops at a learning rate of 10~ 6 by dividing the learning rate by 10 where the standard
deviation of the linear fit of the reconstruction error is a factor greater than the slope of
the fit. Overview of ZSSR [SCI17] can be seen in Figure 2.13

Iterative Kernel Correction

Iterative Kernel Correction for Ultrasound Image Super-Resolution (IKC) [Gu+19] is a
blind SR method for blur kernel estimation, which tries to predict and correct the blur
kernel iteratively. Authors argue that taking the concatenation of the image and blur
kernel (degradation maps) as input is not an optimal solution. Therefore, they propose
a blind super-resolution method that tries to solve the following:

0, = arggminHk—P(ILR;Gp)H% (2.6)
4
where k is the blur kernel and P(ILR) is the predictor which estimates blur kernel
k'. Since the accurate estimation of k is impossible, it may lead to kernel mismatch,
which can cause artifacts such as shown in Figure 2.14. Therefore, to correct the kernel
mismatch, authors [Gu+19] propose a corrector structure:

6c = argmin ||k — (C(I°%;6) + k)| [3 (2.7)

6.

15
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Figure 2.13: ZSSR creates "HR fathers" as augmenting images, then downsamples it to
create "LR sons" to compute the SR information in patches of a single image
to use that information to upscale the image given to real super-resolution
[SCI17].

Since the corrector may overshoot if done at once and may lead to another kernel
mismatch, the structure is used to correct the kernel gradually, so iteratively. Therefore
the overall architecture looks as in Figure 2.15, also the overview of the P and C
networks are shown in Figure 2.16

2.2 Ultrasound Image Super-Resolution

In this section, some of the recent works on SR, especially for ultrasound images, are
reviewed.

2.2.1 Deep Convolutional Neural Network for Ultrasound Super-Resolution

DECUSR is one of the earliest SR methods developed specifically for B-mode ultrasound
images. Similar to the EDSR and SRGAN, the architecture is based on the CNN layers.
The DECUSR architecture is shown in Figure 2.17. The architecture consists of a
feature extraction module, repeating blocks, and a concatenation/upsampling layer
to reconstruct the image. According to their benchmarks, DECUSR outperforms
EDSR and SRCNN architectures regarding ultrasound images. While this model is
remarkable in terms of learning-based ultrasound SR, when compared to Blind SR
models, their experiment lacks PSF degradation. They used a bicubic downscaled
dataset to reconstruct the SR image. As the resolution degradation blur process of an
actual scene is intricate and unknown, according to Liu [Liu+22], this assumption is

16
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Figure 2.14: Blur kernel mismatch where o7z denotes the downsampling kernel and
SR denotes the kernel used to super-resolve. When ¢LR > 0SR, it creates
still blurry images, and when ¢LR > ¢SR, it creates over-sharpened images.
[Gu+19]

17
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Figure 2.15: Predictor predicts the blur kernel which is used by SR model to generate
SR image, which fed again into corrector with the given blur kernel to
calculate the mismatch of the blur kernel and new blur kernel fed again
iteratively until the proper kernel is found [Gu+19].

Figure 2.16: Overview of the predictor and corrector modules used in IKC [Gu+19].

18
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not valid for ultrasound imaging.

Figure 2.17: Model architecture of DECUSR [TB20]

2.2.2 Perception Consistency Ultrasound Image Super-Resolution via
Self-Supervised CycleGAN

In addition to ZSSR [SCI17], USSSCSR [Liu+21a] proposes an ultrasound image super-
resolution network combined CycleGAN [Zhu+17] into ZSSR [SCI17], which introduces
cycle consistency, improves the image quality. Similar to ZSSR [SCI17], this model also
creates "HR fathers" by augmenting the original image and creates "LR sons" by down-
sampling them. Then the network is replaced by CycleGAN [Zhu+17], which utilizes a
multi-scale structure for the generator part and considers perception consistency by
training LR to HR, then using that HR to LR back. After the training of the CycleGAN is
completed, the actual image is sent as LR input to obtain SR reconstruction. By utilizing
the multi-scale structure in the LR to SR generator, such as shown in Figure 2.18, they
are simulating the sensation of low-frequency ultrasound images by downscaling the
images for the same part, since some of the details are lost when downscaled, similar to
the low-frequency ultrasound which aims to reconstruct the image in different scales.

In addition to LR - SR generator, for the cycle consistency, to eliminate the artificial
and redundant details introduced in image generation and fulfill the CycleGAN-styled
pipeline, they also designed a HR - LR image generation network by feeding the
high-quality image and accompanying Gaussian noise as input as shown in Figure 2.19.

For the discriminator part, they employed a PatchGAN style discriminator to calculate
adversarial loss, such shown in Figure 2.20.

The total loss function of USSSCSR [Liu+21a] as follows:

Etotal - “ﬁpixel + ,Bﬁperceptual + ')’Eadversarial + Wﬁcycle (28)

where Ly is the pixel-wise 10ss, Lyerceptual i the perceptual loss coming from VGG
[SZ14], Lagversarial i the adversarial loss, Ly is the cycle consistency loss. «, B, 7, 17
are the weights of the loss functions.

As an overview, Figure 2.21 shows the whole pipeline of USSSCSR [Liu+21a].
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Figure 2.18: Multi-scale generator employs three different scales to recover the SR image
[Liu+21a].

Figure 2.19: HR to LR Generator of USSSCSR, where it takes HR image and Gaussian
noise to output LR image. [Liu+21a].
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Figure 2.20: Structure of the discriminator of USSSCSR [Liu+21a].

Figure 2.21: USSSCSR pipeline [Liu+21a].
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2.2.3 Progressive Residual Learning with Memory Upgrade for Ultrasound
Image Blind Super-Resolution

PRLMU [Liu+22] is a SR method which is used to enhance the quality of the ultrasound
images. Similar to IKC [Gu+19], this model also assumes the existence of Gaussian
blur in the images of ultrasound without additive noise to reduce the complexity, then
instead of using a corrector, they [Liu+22] try to solve the following problem:

r=y—(xxk) s (2.9)

where r is the residual, y is the degraded image, x is the SR image, k is the blur kernel,
ls is the downsampling operator. The goal is to find the residual r, the difference
between the degraded image and the SR image. Therefore, the authors introduce
residual learning to transform the SR problem to the progressive restoration of residuals
iteratively, such shown in Figure 2.22. In addition to that, PRLMU seeks for highest
spatial attention score to determine the blur kernel by calculating the spatial attention
map such as shown in Figure 2.23 and also proposes Improved Channel Attention
Block (ICAB) to upsample LR image to create SR image as in Figure 2.24. Finally, by
using memory upgrade PRLMU [Liu+22] aims to store and update residuals to obtain
finer details.
To summarize, the PRLMU [Liu+22] architecture does the following operations:

k = Estimate(IR)
]

M; = [M;_1, upsampling(L,_,, M;_1)

~1
(2.10)
Isg,, = sum(M;)
Iy =Ir - (ISRi—l xk) |
For the loss, it uses the following loss function:
ﬁtotul = lo + El}/ + gkernel
lsp = ||Inr — G(ILr)| |1
n
O = Y ||ai(Ig — Di(SR:)) |1 (2.11)
i=1
UG n
gkernel = 2(1 —Ynire lOg(PZI)LR’C)) + 2(1 — Zl e log(piRlc))
c=1 c=1

where /g, is the ¢; pixel-wise loss by the HR image and SR image generated. ¢}, is the
residual learning loss, where it tries to optimize residue, D; is the residual learning
module for ith stage, and «; is the weight coefficient set to 0.1 for each stage, this
process is exampled in Figure 2.22.0y,,,, is the kernel learning loss, which is calculated
as softmax cross entropy, where m, n are respectively the number of categories for
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the variance and kernel size and yj, , ¢, Z1,,,c are the one-hot encoding values for the
variance and kernel size, pj ., pj, . . are the probability of the kernel variance and size
LR/C LR/C
estimated from the LR image.
Finally, the whole architecture can be seen in Figure 2.25.

Figure 2.22: Residual learning mechanism tries to update residue gradually. [Liu+22].

Figure 2.23: Spatial attention mechanism tries to find the highest spatial attention score
to determine the blur kernel. [Liu+22].
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Figure 2.24: ICAB module is used for upsampling the LR image to create the SR image.
[Liu+22].

Figure 2.25: Overview of the PRLMU [Liu+22] architecture.
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Since one of the older approaches, PRLMU, does not have a publicly available training
code to have a common benchmark between these methods, in this thesis, common
cartoid artery ultrasound (CCA-US) dataset is used as one of the datasets. The CCA-US
data contains 84 B-mode images acquired by Sonix OP ultrasound scanner [Zuk+13].
Some images with different capturing settings exist, such as shown in Figure 3.1. Since
it may create a bias in training, the images similar to the test set have been deleted
from the training set. In addition to that, some images are smaller than 256 * 256, and
these are deleted since we are randomly cropping images to 256 * 256 as HR images.
In total, 79 ultrasound images with width and height bigger than at least 256 * 256.
Randomly selected 61 images are used as the training set, 9 of the images are used
as the validation set, and 9 of the images are used as the test set. An overview of the
images in the CCA-US dataset [Zuk+13] can be seen in Figure 3.2

In addition, as a second dataset, Breast Ultrasound Images Dataset (BUSI) is used.
BUSI is another public dataset collected in 2018, consisting of 780 images with an
average image size of 500 * 500 pixels having breast ultrasound images among women
aged between 25 and 75 [Al-+20]. Randomly 120 images are taken from with a
resolution bigger than 256 * 256, randomly cropped 256 * 256 pixels in each image and
100 of them are used as the training set, 10 of them are used as the validation set, and
10 of them are used as the test set. An overview of the images in BUSI dataset [Al-+20]
can be seen in Figure 3.3

3.1 Data Preprocessing

By following the same claims of SRMD and PRLMU [Z2ZZ17; Liu+22], the LR images
are created synthetically by downscaling the HR images with bicubic interpolation
and synthetically adding blur and omitting noise. In that way, we aim to train a
robust network that can learn different levels of blur and check if creating synthetic
degradation helps the SR network. Therefore, we will categorize the datasets in two
different levels for the experiments: "no-blur (bicubic degraded) images" and "Gaussian
blurred images".

For preprocessing, by taking one of the images from these datasets [Zuk+13; Al-+20],
it is possible to see that the images are not the same size. To make the images at the
same size, these images are randomly cropped to the same size to the size of 256 * 256
for training and validation sets. Then the LR images are created by downscaling the
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(a) An ultrasound image in CCA

(b) Another image, probe moved to the right

Figure 3.1: Two different ultrasound images in the CCA dataset taken in the similar
case [Zuk+13]. This situation might create a bias if one fed to the test set
and another to the training set.
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Figure 3.2: An overview of the images in CCA dataset [Zuk+13]
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Figure 3.3: An overview of the images in BUSI dataset [Al-+20]
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HR images with bicubic interpolation. The LR images are downsampled to the size of
64 * 64 to create the no-blur category. Then a Gaussian blur with a kernel size of 21
pixels and a sigma between 1.8 to 3.2 pixels is applied in 8 different levels to create the
second category, blurred images. Then all of these LR images are bicubically upscaled
to 4x back to the exact resolution for fake-SR copies. For the BUSI dataset, in the
validation set, 10 different pictures with sigma 2.0 and 3.0 totaled 20 images. Also,
in the test set, 10 pictures with sigma 2.0 and 3.0 totaled 20 images. Overall, there
exist 2 different categories on 2 different datasets. For the CCA dataset, 9 different
pictures with sigma 2.0 and 3.0 in the validation set totaled 18 images. Also, 9 pictures
with sigma 2.0 and 3.0 totaled 18 images in the test set. By having a small but enough
amount of testing and validation images, we can better understand the network’s
performance for the different amounts of Gaussian blurring. Overall, there exist 2
different categories (i.e., bicubic downsampled and Gaussian blurred) on 2 different
datasets (i.e., CCA and BUSI). The whole process of generating datasets can be seen in
Figure 3.4.

Figure 3.4: Dataset preprocessing, synthetically creating two categories by bicubically
downgrading and applying various amounts of Gaussian blur.
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4 Method Overview

In this thesis, we aim to enhance the resolution of PSF degraded (blurry) ultrasound
images using super-resolution (SR) techniques. We explored two approaches for SR:
SR methods and degradation-aware SR methods. While SR methods rely on a known
degradation model, such as bicubic downsampling, degradation-aware SR methods do
not assume any specific degradation model.

After reviewing the different methods for ultrasound super-resolution, since the
classic SR methods lack the degradation awareness, and blind SR models might not
realize unseen degradation models, such authors of SRMD [ZZZ17] argued, we propose
to use a deblurring network, such as DeblurGANv2 [Kup+19] or NAFNet [Che+22a] to
realize blur and noise weights to fine-tune the SR image without having to deal with
precomputed blur kernels as blind SR models do.

The pipeline is to restore the LR image to a fake SR image using bicubic upscaling.
The restored image is then fed to the deblurring network to generate the final high-
resolution (HR) image.

Since the super-resolution problem is modeled as [Liu+22]:

y=(xxk)ls+n 4.1)

where 7 is just the noise, k is the blur/degradation kernel, and s is the scale factor for
the (bicubic) downsampling. The goal is to find the HR image y from the LR image x.
Therefore the difference between the LR image y and the original HR image x should be
minimized in terms of PSNR and structural similarity (SSIM) which will be explained
in the Section 6.2.

This approach offers the advantage of utilizing both the information from the LR
image and the prior knowledge of the various amounts of blur kernels to enhance the
resolution of the image flexibly. By using a deblurring network, we can effectively
reduce the blur, noise, and other artifacts in the image, resulting in a high-quality HR
image.

In addition to that approach, we will also be exploring the use of the recent natural
image SR models such as HAT [Che+22b] and SwinIR [Lia+21] and our other proposal,
which is HAT-NAF mixture that aims to simplify HAT [Che+22b] network with nonlin-
ear activation-free [Che+22a] blocks to see if they can be used to enhance the resolution
of ultrasound images such shown in Figure 4.1. We will be comparing the performance
of the two approaches and see which one performs better.

30



4 Method Overview

Figure 4.1: Model Overview of Super-Resolution Networks to fine-tune degraded image
as super-resolved image.
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Since our approach is to optimize the difference between a bicubically upscaled fake
super-resolution image and HR ground truth image to realize the deblur and denoising
parameters to enhance the resolution of the PSF degraded (blurry) ultrasound images,
we need to first introduce some of the deblurring networks. We will then introduce
the two deblurring networks we used in this thesis: DeblurGAN [Kup+18] and Deblur-
GANV2 [Kup+19]. Finally, we will introduce the NAFNet [Che+22a], a new deblurring
network we proposed in this thesis.

5.1 DeblurGAN

In this thesis, we focus on deep learning-based approaches for image deblurring and
denoising to fine-tune a bicubically upscaled image to reconstruct a SR image as similar
to the HR ground truth image, we introduce DeblurGAN as our first approach, which
is replaced by DeblurGANv?2 later on, but to comprehend the concept, DeblurGAN is
essential.

DeblurGAN is a generative adversarial network (GAN) proposed by O. Kupyn,
V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas in 2018 [Kup+18] to learn the
mapping between blurred and sharp images. The model consists of a generator network
that generates deblurred images and a discriminator network that distinguishes between
real and generated images. By training the generator and discriminator networks in
an adversarial manner, DeblurGAN learns to generate high-quality deblurred images.
In that way, DeblurGAN benefits from using GANs, which are famous for preserving
texture details in images, and creating perceptually convincing outputs when compared
to the plain mean squared error (MSE) loss optimization shown in Figure 5.1.

DeblurGAN is designed as an end-to-end learning method for blind motion deblur-
ring of a single photograph. DeblurGAN utilizes a Markovian (PatchGAN) discrimi-
nator which penalizes a structure at the scale of patches by basically classifying each
N * N area of an image as real or fake with a convolutional network shown in Figure 5.3
[Iso+16]. In Figure 5.2, generator architecture is shown [Kup+18].

Since DeblurGAN is a generative adversarial network, the generator tries to create an
unblurred, high-quality image. The discriminator tries to prove if an image is real or
fake, distinguishing between reconstructed SR image and HR image samples. Therefore
optimization game between generator G and discriminator D is described as a minimax
objective:
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Figure 5.1: When MSE loss is used, the network will tend to predict averaged outputs,
resulting in blurry and visually unpleasant images. [LKC16]

minmax E [logD(x )]+xlEﬂ,q[10g(1— (%))] (5.1)

where P, is the distribution of the data and IP; is the distribution of of the model
and ¥ = G(x),z ~ P(z). Solving this minimax objective as vanilla GAN function
causes issues such as mode collapse, vanishing gradient, and many more, therefore in
DeblurGAN'’s discriminator, WGAN loss based on Wasserstein-1 distance is used as a
design choice [Kup+18]. The WGAN-GP loss function is defined as following [Gul+17]:

ming, maxpep E [D(x)] — E [D(%)] + AEzup,[||VzD(%)||2 — 1]? (5.2)

x~IP ¥~Py

where D is the set of 1-Lipschitz functions and A is the gradient penalty coefficient.
The gradient penalty is used to enforce the Lipschitz constraint on the discriminator
where the idea is to approximate K - W(P,, Py) where K is Lipschitz constant and W is
the Wasserstein distance [Kup+18].

Also, for generator loss, a combination of content and adversarial loss is used:

L = Ligversarial + ALcontent, A = 100 (5.3)
N
'Cadversarial = Z _DGD(G(?GUB)) (5-4)
n=1
W, Hi;
Lcontent = Wi - H ZZ CPz] x _4)i,j(G9G(IB))x,y)2 (5-5)

Ljs i=1j=1

where I® is the input blurry image, I° is the ground truth sharp image, Gy is the
generator network, Dy, is the discriminator network, ¢; ; is the feature extractor network,
W;; and H;; are the width and height of the ith and jth patches, respectively.

Fmally, the whole network architecture is trained with Adam optimizer [KB14] with
a 10~ learning rate. The overview of the whole architecture is shown in Figure 5.4
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Figure 5.2: DeblurGAN generator is made of two strided convolution blocks, nine
residual blocks [He+15], and two transposed convolution blocks. Each
residual block has a convolution layer, instance normalization, and ReLU
activation [Kup+18].

Figure 5.3: PatchGAN discriminator is a convolutional network that runs on N x N
image patches to classify if the patch is fake or real. [GAS20].
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Figure 5.4: The overview of the DeblurGAN architecture [Kup+18]. In our case, the
generator takes a blurred image, the fake SR image ,as input and produces
a restored image, SR. The critic (discriminator) network takes both SR and
HR images and outputs a distance between these two images. Total loss
is calculated as the sum of the WGAN loss and perceptual loss[JAF16].
Perceptual loss is computed as the difference between the VGG-19’s conv3.3
feature maps [SZ14] of the SR and HR images.
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5.2 DeblurGANv2

After successfully implementing ultrasound super-resolution by utilizing Bicubic up-
scaling and DeblurGAN to fine-tune the super-resolved image, to achieve a better result,
DeblurGANV?2 is replaced with DeblurGAN in this pipeline which is an improved
version of DeblurGAN [Kup+19], which is used in our experiments.

DeblurGANV?2 is also an end-to-end GAN, increasing efficiency in inference time, im-
age quality, and flexibility. DeblurGANvV2 employs a Feature Pyramid Network (FPN) in
the generator, which was originally developed for object detection and implemented for
image reconstruction for the first time; it can be connected to different backbones such
as Inception-ResNet-v2 [Sze+16] for better image deblurring quality, and MobileNet
[San+18] for faster inference [Kup+19]. For the discriminator part, DeblurGANvV2 em-
ploys a relativistic [Jol18] double-scale discriminator with a least-square loss [Mao+16],
which evaluates global (image) and local (patch) scales.

By taking the same minimax game used in DeblurGAN:

minmaxV(D,G) = E [logD(x)]+ E [log(l1—D(G(z)))] (5.6)
G D X~ gata (X) zp(2)

Again, to deal with the optimization problems of this objective function, such as
mode collapse and gradient vanishing/explosion, Least Squares GAN loss [Mao+16] is
used to generate a smoother and non-saturating gradient. Which removes log to deal
with quick saturation, and by utilizing L2 loss, fake samples get larger penalties. Also,
the proposed loss function minimizes the Pearson x? divergence, which improves the
training stability [Kup+19]. Therefore the loss function is defined as:

1

: _ = _ - 2
minV(D)=5 E [(D(x)~17]+, E [D(G()] o
. 1 '
minV(G)= 5 E_[(D(G(z) - 17

Then instead of using WGAN-GP discriminator in DeblurGAN [Kup+18], authors
[Kup+19] proposed to use a relativistic wrapping [Jol18] on top of the LSGAN [Mao+16]
cost function which results RaGAN-LS loss:

Lo = el GO = B D(G() - 1)?]
+ E [(D(G(z))— E D(x)+1)*]

ZNP(Z) X~Pdata (x)

(5.8)

Compared to WGAN-GP loss, it is reported that RaGAN-LS loss is more stable
and faster to train, produces higher perceptual quality, and generates sharper images
[Kup+19]. The overview of the DeblurGANV2 can be seen in Figure 5.5.
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For the overall loss, it is defined as:
L = 0.5% Ly +0.006 * Lx + 0.01 * L4, (5.9)

where L, is the pixel space loss such as L; or L, loss, where MSE loss is chosen by
design choice to help correct color and texture distortions [Kup+19]. Lx is the content
loss which uses VGG19 [SZ14] conv3.3 feature maps, and L4, is the adversarial loss,
which covers the discriminator losses.

Figure 5.5: Overview of the DeblurGANV2. As for the generator uses FPN to cover
different scales of features, and for the discriminator, it uses a double-scale
discriminator to cover both patch and image-level classification. [Kup+19].

In addition to all of the changes proposed in DeblurGANv2 [Kup+18], we imple-
mented a pre-trained Swin Transformer v2 architecture shown in Figure 5.6 and the
key changes shown in the Figure 5.7 [Liu+21b] into the FPN to have the benefits of
using Transformer.

Different than Inception-ResNet-v2 [Sze+16] pre-trained Swin v2 [Liu+21b] only has
4 stages; therefore, we connected 4 of the FPN layers to the Swin Transformer v2’s
features [Liu+21b] by disabling the biggest feature map, with respectively upscaled
t0 8,4, 2 and 1 concatenated, fed into a convolution to smoothen then all of them are
upscaled by 2 with nearest neighbor (NN) mode. Also, to generate the biggest map,
the first map from Swin v2 is bicubically upscaled by 2 and again fed into another
smoothing convolution. Finally, they are upscaled again 2 with NN mode.

5.3 Nonlinear Activation Free Network for Image Restoration

Finally, we decided to look at one of the recent works in the image deblurring area for
ultrasound super-resolution by utilizing deblurring tools to improve the results even
further. Nonlinear Activation Free Network (NAFNet) [Che+22a] tries to achieve state-
of-the-art (SOTA) by having a low inter-block complexity by utilizing single-stage UNet
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Figure 5.6: Architecture of Swin Transformer v2, where it consists of 4 stages. [Liu+21b]

which shown in Figure 5.8 [RFB15] and low intra-block complexity, which starts with
the simplest block design such as convolution, ReLU activation and shortcut [He+15]
which shown in Figure 5.11b. Then by experimenting with different components,
authors created a baseline model which contains layer normalization, convolution,
Gaussian Error Linear Unit (GELU) [HG16], which can be seen in Figure 5.9 and
Channel Attention Module (CA), which is computationally efficient and brings global
information to the feature map, where self-attention suffers from complexity and fix-
sized local window self-attention suffers from the global information [Che+22a]. The
baseline block is shown in Figure 5.11c.

By pushing the simplicity even further, authors created NAFNet by checking the two
concepts: Simplifying the Gated Linear Units and the CA block. Where gated linear
units [Dau+16] can be formulated as:

Gate(X, f,8,0) = f(X©o(g(X))) (5.10)

where X is the feature map, f and g are the linear transformers, ¢ is a nonlinear
activation function and © is the element-wise multiplication. Since GLU [Dau+16]
increases the intra-block complexity, authors decided to use GELU [HG16]:

GELU(x) = xP(x) (5.11)

where @ represents the cumulative distribution function for the standard normal
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Figure 5.7: Architecture of Swin Transformer v2, where it changes the order of layer
norms with a post-normalization and adds scaled cosine on the attention
function instead of the dot product to make it easier to scale up the capacity
and also replaces parameterized relative position bias with log-spaced con-

tinuous RPB to transfer model more effectively across window resolutions.
[Liu+21b]
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Figure 5.8: Overview of the image restoration model architectures. (a) The Multi-
Stage Architecture is just a stacked UNet. (b) The Multi-Scale Fusion
Architecture is a UNet with skip connections from different scales. (c) Finally
the architecture of UNet [RFB15], which is the simplest image restoration
architecture, used in NAFnet [Che+22al].
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distribution, which is implemented as:

d(x) = %x(l + tanh(\/z (x +0.044715x%)]) (5.12)

therefore, GELU is a special case which ¢ is ¢ and f and g are identity functions.
Therefore, by taking nonlinearity out, similar to GELU, authors [Che+22a] propose the
SimpleGate function:

SimpleGate(X,Y) =XOY (5.13)

where X and Y are feature maps of same size and © is the element-wise multiplication.
The only nonlinear activations left in the baseline are Sigmoid and ReLU in the CA,
which is modeled as:

CA(X) = X * c(Womax(0, Wipool(X))) (5.14)

where X denotes the feature map, * is the channelwise product operation, pool is
global average pooling and finally ¢ is sigmoid activation and max operation denotes
ReLU activation between W;, W, layers. Therefore, by eliminating the activation func-
tions to remove nonlinearity, the Simplified Channel Attention [Che+22a] is proposed
as:

SCA(X) = X * Wpool(X) (5.15)

Finally, the changes shown in Figure 5.10 are applied to the baseline block, and the
final block is shown in Figure 5.11d.

Figure 5.9: Comparison of the GELU [HG16] activation function with ReLU and ELU
[CUH15] activations.
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Figure 5.10: (a) Channel attention [Hu+17] model is simplified as (b)Simplified Channel
Attention, and GELU activation is replaced with (c) Simple Gate. [Che+22a]

Figure 5.11: Different architectures for intra-blocks. (a) is Restormer’s block [Zam+21],
which is another efficient image restoration network with some details
omitted, (b) is PlainNet’s block, (c) is NAFNet’s Baseline block, and finally,
(d) is the NAFNet’s block. [Che+22a].
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5.4 HAT - NAF Mixture

As another proposal, we decided to combine the best of both worlds, HAT [Che+22b]
and NAFNet [Che+22a], to see if we can achieve better results. HAT is a SOTA
image restoration network which utilizes CA [Hu+17], therefore we decided to use
NAFNet’s Simplified Channel Attention (SCA) [Che+22a] instead of CA [Hu+17] in
HAT [Che+22b] and also, we removed the activation functions such as ReLU in the
upsampler. Also, we changed all activation functions in CA block with SimpleGate of
NAFNet [Che+22a] since we replace the whole CA block with SCA to see if we can
achieve better results. The final architecture is shown in Figure 5.12.

Figure 5.12: The architecture of HAT-NAF. Basically CA block of HAT [Che+22b] is
replaced with NAFNet’s NAF block [Che+22a].
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6 Experiments & Results

In this section, the settings of the experiments are presented. Then, the results of these
experiments are presented. First, the results of the experiments on the CCA-US dataset
are presented. Then, the results of the experiments on the BUSI dataset are presented.
Each of these datasets is benchmarked in two different categories, no-blur and Gaussian
blurred.

6.1 Experiments

For this work, we have trained various SR and deblurring networks such as Enhanced
Super-Resolution Generative Adversarial Networks (ESRGAN) [Wan+18], EDSR [Lim+17],
SwinIR [Lia+21], HAT [Che+22b], DeblurGANv2 [Kup+19] and NAFNet [Che+22a],
our proposed SR and deblurring networks and our proposed NAF-HAT mixture net-
work and tested on these networks where PSNR for validation is highest for each
network respectively and PRLMU [Liu+22] on the CCA-US and BUSI datasets. In the
following subsubsections, the settings of the experiments are presented.

6.1.1 ESRGAN

For training the ESRGAN network, we have used the ESRGAN implementation from
BasicSR [Wan+22] and trained the network on the CCA-US and BUSI datasets. The
ESRGAN network is trained with the 4x SR setting from 64 * 64 to 256 * 256. It has
trained on two NVIDIA TITAN Xp with a batch size of 8. It utilizes the RRDB [Wan+18]
network with 23 residual blocks and 64 features. It has trained with the Adam optimizer
with a learning rate of 10~* and ran for 10000 iterations with L1 loss with the weight of
102, Perceptual VGG, and vanilla GAN loss with the weight of 5 * 10-3.

6.1.2 EDSR

For training the EDSR network, we have used the EDSR implementation from BasicSR
[Wan+22] and trained the network on the CCA-US and BUSI datasets with and without
blur degraded configurations. The EDSR network is trained with the 4x SR setting
from 64 * 64 to 256 * 256. It has trained on one NVIDIA RTX A5000 with a batch size
of 16. The EDSR network contains 32 residual blocks with 256 features. It has trained
with the Adam optimizer with a learning rate of 10~* and ran for 10000 iterations with
L1 loss.
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6.1.3 SwinIR

For training the SwinIR network, we have used the SwinIR implementation provided
by BasicSR [Wan+22] and trained the network on the CCA-US and BUSI datasets with
and without blur degraded configurations. The SwinIR network is also trained with
the 4x SR setting from 64 * 64 to 256 * 256. It has trained on two NVIDIA RTX A5000
GPUs with a batch size of 4 per GPU. The SwinIR network has an input image size of
48 x 48 and a window size of 8. It has 6 stages with 6 layers per stage and 6 attention
heads for each layer with an embedded dimension of 180 with an MLP ratio of 2, and
as the upsampler, pixel shuffle is used. It has trained with the Adam optimizer with
a learning rate of 2 * 10~* and multi-step scheduler gamma of 0.5 with milestones at
5000, 8000, 9000, 9500 and ran for a total of 10000 iterations with L1 loss.

6.1.4 HAT and NAF-HAT Mixture

For training the HAT network, we have used the HAT implementation by the authors
of HAT [Che+22b]. The HAT network is trained with the 4x SR setting from 64 * 64 to
256 * 256. It has trained on two NVIDIA RTX A5000 GPUs with a batch size of 2 per
GPU. It takes 64 * 64 input image size with a window size of 16, compress ratio of 3,
and squeeze factor of 30. It has 12 stages with 6 layers per stage and 6 attention heads
for each layer with an embedded dimension of 180 with an MLP ratio of 2, and as the
upsampler, pixel shuffle is used, similar to SwinIR [Lia+21]. It has trained with the
Adam optimizer with a learning rate of 2 * 10~* and multi-step scheduler gamma of
0.5 with milestones at 3000, 5000, 6500, 7000, 7500 and ran for a total of 10000 iterations
with L1 loss.

6.1.5 PRLMU

Since PRLMU [Liu+22] does not have any training methods supplied by authors, we
only have tested the PRLMU network supplied by the authors on the CCA-US and
BUSI datasets with and without blur degraded configurations.

6.1.6 DeblurGANv2

For training the DeblurGANv2 [Kup+19] network, we have used the DeblurGANv2
implementation from the authors [Kup+19] and trained the network on the CCA-US
and BUSI datasets with and without blur degraded configurations. The DeblurGANv2
network is trained with the bicubically upsampled images of 256 * 256 to high-resolution
images with the same 256 * 256 resolution. It has trained on two NVIDIA RTX A5000
GPUs with a batch size of 4 per GPU. We have trained two different models of the
DeblurGANv2 network; one employs the Inception ResNet v2 [Sze+16] as FPN, and
the other one is our proposed with Swin v2 [Liu+21b] as FPN. Also, we have trained
two different models of the DeblurGANV2 network; one employs the Inception ResNet
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v2 [Sze+16] as FPN, and the other one is our proposed with Swin v2 [Liu+21b] as FPN,
these networks marked as "Aug", they use bicubically upsampled datasets but with
augmentation that is used in DeblurGANV2’s original implementation, such as motion
blur, median blur, gamma, RGB and HSV shifts, sharpening, JPEG distortion, cutouts
[Kup+19].

6.1.7 NAFNet

For training the NAFNet network, we have used the original NAFNet implementation
provided by the authors [Che+22a]. The NAFNet network is trained with the 1x
"refinement" setting in 256 x 256 where the input image is either blurred and bicubically
upsampled or only bicubically upsampled image from the CCA-US and BUSI datasets.
It has trained on two NVIDIA RTX A5000 GPUs with a batch size of 8 per GPU. It is
trained on the network type "NAFNetLocal", which enables Test-time Local Conversion
[Chu+22] with a width of 64 and encoder blocks of 1,1, 1,28, one middle block and
decoder blocks of 1,1,1,1. It has trained with the Adam optimizer with a learning
rate of 1073 with 10~ 3 weight decay, 0.9, 0.9 betas, cosine annealing LR scheduler with
minimum LR of 1077 and ran for 10000 iterations with PSNR loss.

6.2 Evaluation Metrics

In this section, we present the evaluation metrics used in the experiments. The eval-
uation metrics used in the experiments are Peak Signal-to-Noise Ratio (psnr) and
Structural Similarity Index (SSIM) [HZ10]. The PSNR is a measure of the quality of the
reconstructed image, and it is defined as:

MSE (6.1)

where MAX is the maximum valid value for a pixel such that 1 or 255 and MSE is
the mean squared error between the original and the reconstructed image such that:

2
PSNR = 10log,, (MAXI )

MSE =

Y (h—D)? (6.2)

Cxixj
where i and j are the height and width of the image, respectively, and c is the number
of channels of the images I; and I,.
The SSIM is a measure of the similarity between the original and the reconstructed
image, and it is defined as:

SSIM = I(x,y) - c(x,y) - s(x,y) (6.3)

where I(x,y) is the luminance component, ¢(x,y) is the contrast component, and
s(x,y) is the structure component. The luminance component is defined as:
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2iepty + C
I(x,y) = Sy T (6.4)

i+ G

where p, and i, are the mean values of the original and the reconstructed image,
respectively, and C; is a constant that is used to stabilize the division by zero. The
value of C; is chosen as C; = (K;L)? where L is the dynamic range of the pixel values
and K; << 11is a small constant. The contrast component is defined as:

2000y + C
0: % + 0'5 + Cz
where 0y and 0, are the standard deviations of the original and the reconstructed
image, respectively, and C; is a constant that is used to stabilize the division by zero.
The value of C, is chosen as C; = (KQL)Z where L is the dynamic range of the pixel
values and K; << 1 is a small constant. The structure component is defined as:

c(x,y) = (6.5)

—_— 6.6
ox0y + C3 (6.:6)

s(x,y) =

where Oy 18 the covariance between the original and the reconstructed image, and
Cs is a constant that is used to stabilize the division by zero. The SSIM is calculated
for each channel of the image separately and then averaged over all channels. The
SSIM is calculated for each channel of the image separately and then averaged over all
channels.

6.3 Results

In the following sections, we present the results of the experiments. The results of the
experiments are presented for CCA with bicubic degradation in Table 6.1, for CCA
with blur + bicubic degradation in Table 6.2, for BUSI with bicubic degradation in
Table 6.3 and for BUSI with blur + bicubic degradation in Table 6.4. The results are
ordered by PSNR in each table. Then the results of the experiments are presented as
figures in Figure 6.1, Figure 6.2, Figure 6.3 and Figure 6.4, where the figures contain
the images respectively from the same datasets (there will be no cross-overs between
BUSI and CCA) and blurred images are reconstructed from 3.0 sigma blur kernel over
the gaussian blur size of 21. Also, the PSNR and SSIM values reported on the figures
are not representing the single image but indicate the average value of the test set (i.e.,
taken from the tables for easier comparison).

6.4 Achieving Real Super-Resolution

After training these models, we can achieve real super-resolution by feeding HR
images as the LR image of the model. The results are presented in Figure 6.5 and
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Model Dataset Trained On PSNR SSIM
HATNAF CCA 35.7466 0.9343
HAT CCA 35.4987 0.9329
HAT BUSI 34.9785 0.9285
HATNAF BUSI 34.8797 0.9245
NAFNet CCA 33.7691 0.9055
EDSR CCA 33.6931 0.9071
SwinlR CCA 33.5828 0.9107
SwinIR BUSI 33.2998 0.9057
NAFNet CCABLUR 33.1674 0.8925
EDSR BUSI 33.0896 0.8714
NAFNet BUSI 33.0192 0.8857
NAFNet BUSIBLUR 32.9580 0.8910
DeblurGANv2-Inception-Aug | CCA 32.8221 0.8112
HAT CCABLUR 32.6455 0.9172
DeblurGANv2-Inception BUSI 32.6343 0.8346
DeblurGANvV2-Swinv2 BUSI 32.6076 0.8258
DeblurGANvV2-Swinv2-Aug BUSI 32.6014 0.8308
DeblurGANv2-Inception-Aug | BUSI 32.4752 0.8274
DeblurGANvV2-Swinv2 CCA 32.4706 0.7153
DeblurGANv2-Inception CCA 32.4531 0.8159
DeblurGANvV2-Inception CCABLUR 32.3528 0.8113
HAT-NAF CCABLUR 32.2511 0.9122
DeblurGANv2-Swinv2-Aug CCA 32.1360 0.7908
SwinIR CCABLUR 31.7237 0.8885
DeblurGANv2-Inception BUSIBLUR 31.4022 0.8179
HAT BUSIBLUR 31.1572 0.9055
DeblurGANv2-Swinv2 BUSIBLUR 30.7294 0.7948
SwinlR BUSIBLUR 30.3656 0.8887
DeblurGANv2-Swinv2 CCABLUR 30.2515 0.8017
HAT-NAF BUSIBLUR 30.1834 0.8883
ESRGAN CCA 30.0244 0.8153
ESRGAN BUSI 29.6859 0.8328
EDSR BUSIBLUR 29.2012 0.8631
EDSR CCABLUR 28.9379 0.8402
PRLMU-pretrained CCABLUR 27.25086 | 0.830039
ESRGAN CCABLUR 26.1603 0.7303
ESRGAN BUSIBLUR 19.0914 0.5315

Table 6.1: Results of the CCA Dataset
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Model Dataset Trained On | PSNR | SSIM
HAT CCABLUR 35.3914 | 0.9279
HATNAF CCABLUR 35.2719 | 0.9273
HATNAF BUSIBLUR 34.866 | 0.9222
HAT BUSIBLUR 34.8072 | 0.9233
PRLMU-pretrained CCABLUR 33.6734 | 0.8984
SwinIR CCABLUR 33.3035 | 0.8898
EDSR CCABLUR 33.1699 | 0.8924
SwinlR BUSIBLUR 33.1528 | 0.9006
EDSR BUSIBLUR 33.0655 | 0.8993
NAFNet CCABLUR 32.6682 | 0.8772
NAFNet BUSIBLUR 32.3801 | 0.8718
DeblurGANv2-Swinv2 BUSIBLUR 31.4899 | 0.781
DeblurGANvV2-Swinv2 CCABLUR 31.4514 | 0.7802
HATNAF CCA 30.5964 | 0.8689
DeblurGANv2-Inception CCABLUR 30.4892 | 0.7739
HATNAF BUSI 30.3944 | 0.8652
HAT CCA 30.3591 | 0.8639
HAT BUSI 30.3379 | 0.8643
DeblurGANv2-Inception BUSIBLUR 30.2932 | 0.7762
ESRGAN CCABLUR 29.9351 | 0.8026
NAFNet CCA 29.2018 | 0.8242
SwinlR BUSI 29.1363 | 0.8282
NAFNet BUSI 29.1045 | 0.8173
EDSR CCA 29.0919 | 0.8183
SwinIR CCA 29.0329 | 0.825
EDSR BUSI 28.9884 | 0.7862
ESRGAN BUSIBLUR 28.9588 | 0.7913
ESRGAN BUSI 28.8838 | 0.8107
DeblurGANv2-Inception CCA 28.8636 | 0.7484
DeblurGANv2-Inception-Aug | CCA 28.8597 | 0.7457
ESRGAN CCA 28.8185 | 0.7804
DeblurGANv2-Swinv?2 BUSI 28.7989 | 0.7612
DeblurGANv2-Swinv2 CCA 28.7466 | 0.7153
DeblurGANv2-Swinv2-Aug CCA 28.6449 | 0.7179
DeblurGANv2-Inception BUSI 28.6429 | 0.7612
DeblurGANv2-Swinv2-Aug BUSI 28.5809 | 0.7533
DeblurGANv2-Inception-Aug | BUSI 28.5729 | 0.758

Table 6.2: Results of the CCA-Blur Dataset
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Model Dataset Trained On PSNR SSIM
HAT BUSI 32.474 0.8715
HATNAF CCA 32.2632 0.8649
HATNAF BUSI 32.0637 0.8615
HAT CCA 32.0081 0.86
SwinIR BUSI 30.7687 0.8417
EDSR BUSI 30.6664 0.8398
SwinIR CCA 30.3294 0.8277
DeblurGANv2-Swinv2-Aug BUSI 29.784 0.9297
NAFNet BUSI 29.7682 0.7886
HATNAF CCABLUR 29.6303 0.8213
NAFNet BUSIBLUR 29.619 0.7942
DeblurGANv2-Swinv2 BUSI 29.5974 0.928
EDSR CCA 29.5318 0.7988
HAT CCABLUR 29.5039 0.8158
DeblurGANv2-Inception BUSI 29.4538 0.9273
NAFNet CCA 29.4246 0.7786
DeblurGANv2-Swinv2 CCA 29.297 0.9286
DeblurGANv2-Inception-Aug | BUSI 29.2466 0.9263
HAT BUSIBLUR 29.2198 0.8186
DeblurGANv2-Inception CCA 29.1303 0.9287
DeblurGANv2-Swinv2-Aug | CCA 28.7398 0.923
DeblurGANv2-Inception-Aug | CCA 28.7336 0.9248
SwinIR BUSIBLUR 28.6349 0.8212
HATNAF BUSIBLUR 28.5693 0.8061
SwinIR CCABLUR 28.4765 0.7932
DeblurGANv2-Inception BUSIBLUR 28.4501 0.9288
NAFNet CCABLUR 28.3813 0.7531
DeblurGANv2-Swinv2 BUSIBLUR 27.9851 0.9116
DeblurGANv2-Swinv2 CCABLUR 27.8203 0.9094
DeblurGANv2-Inception CCABLUR 27.4287 0.9093
EDSR BUSIBLUR 27.0586 0.7762
EDSR CCABLUR 26.0705 0.7135
ESRGAN CCA 26.0595 0.6538
ESRGAN BUSI 25.9494 0.7082
PRLMU-pretrained CCABLUR 25.257134 | 0.738353
ESRGAN CCABLUR 22.7761 0.5255
ESRGAN BUSIBLUR 19.5955 0.4465

Table 6.3: Results of the BUSI Dataset
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Model Dataset Trained On PSNR | SSIM
HAT BUSIBLUR 32.1634 0.857
HATNAF BUSIBLUR 32.0966 | 0.8555
HATNAF CCABLUR 31.4532 | 0.8436
HAT CCABLUR 31.377 | 0.8425
SwinlR BUSIBLUR 30.6431 0.834
EDSR BUSIBLUR 30.2703 | 0.8276
SwinIR CCABLUR 29.528 | 0.8046
PRLMU-pretrained CCABLUR 29.340317 | 0.81773
NAFNet BUSIBLUR 29.1153 | 0.7646
DeblurGANv2-Swinv2 BUSIBLUR 28.8459 | 0.9174
HATNAF CCA 28.7869 | 0.7709
HAT BUSI 28.7283 | 0.7707
HATNAF BUSI 28.7158 | 0.7689
EDSR CCABLUR 28.6705 | 0.7759
HAT CCA 28.6129 | 0.7651
DeblurGANv2-Swinv2 CCABLUR 28.372 | 0.9099
NAFNet CCABLUR 27.8738 | 0.7297
DeblurGANvV2-Inception BUSIBLUR 27.5548 | 0.9066
DeblurGANv2-Inception CCABLUR 27.4876 | 0.9045
SwinIR BUSI 27.4599 | 0.7384
EDSR BUSI 27.419 | 0.7355
SwinIR CCA 27.3441 | 0.7334
NAFNet BUSI 27.2842 | 0.7203
NAFNet CCA 27.1005 | 0.7066
EDSR CCA 27.0682 | 0.7123
DeblurGANv2-Swinv2 BUSI 26.9981 | 0.8715
DeblurGANvV2-Swinv2-Aug BUSI 26.9821 | 0.8686
DeblurGANvV2-Inception CCA 26.7742 | 0.8743
DeblurGANv2-Swinv2 CCA 26.7361 | 0.8707
DeblurGANv2-Inception BUSI 26.6884 | 0.8665
DeblurGANv2-Inception-Aug | BUSI 26.5782 | 0.8654
ESRGAN BUSIBLUR 26.7348 | 0.6864
DeblurGANv2-Swin-Aug CCA 26.4426 | 0.8651
DeblurGANv2-Inception-Aug | CCA 26.1125 | 0.8643
ESRGAN BUSI 25983 | 0.7064
ESRGAN CCA 25.9853 | 0.6751
ESRGAN CCABLUR 26.0863 0.666

Table 6.4: Results of the BUSI-Blur Dataset
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(a) LR Bicubic (b) EDSR (c) EDSR - Blur  (d) ESRGAN (e) ESRGAN - BL
64x64>256x256 33.69 / 0.90 28.93 / 0.84 30.02 / 0.81 26.16 / 0.73

(f) SwinIR (g) SwinlR - Blur (h) DGv2-Inc. (i) DGv2-I-Bl. (j) DGv2-I-Au.
33.58 / 091 31.72 / 0.88 3245 / 0.81 32.35 / 0.81 32.82 / 0.81

(k) DGv2-Swinv2 (I) DGv2-S2-Bl.  (m) DGv2-S2-Au. (n) PRLMU - Blur (o) NAFNet

3247 / 0.71 30.25 / 0.80 32.13 / 0.79 27.25 / 0.83 33.76 / 0.90
(p) NAENet - Blur (q) HAT (r) HAT - Blur (s) HATNAF (t) HATNAF - Bl
33.16 / 0.89 35.49 /093 32.64 / 091 35.74 / 0.93 32.25 /091

(u) HR Image
256x256

Figure 6.1: CCA results
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(a) LR Bicubic (b) EDSR (c) EDSR - Blur  (d) ESRGAN (e) ESRGAN - BL
64x64>256x256 29.09 / 0.81 33.16 / 0.89 28.81 / 0.78 29.93 / 0.80

(f) SwinIR (g) SwinlR - Blur (h) DGv2-Inc. (i) DGv2-I-Bl. (j) DGv2-I-Au.
29.03 / 0.82 33.30 / 0.88 28.86 / 0.74 30.48 / 0.77 28.85 / 0.74

(k) DGv2-Swinv2 (I) DGv2-S2-Bl.  (m) DGv2-S2-Au. (n) PRLMU - Blur (o) NAFNet

28.74 / 0.71 31.45 /0.78 28.64 / 0.71 33.67 / 0.89 29.20 / 0.82
(p) NAENet - Blur (q) HAT (r) HAT - Blur (s) HATNAF (t) HATNAF - Bl
32.66 / 0.87 30.35 / 0.86 35.39 / 0.92 30.59 / 0.86 35.27 / 0.92

(u) HR Image
256x256

Figure 6.2: CCA Blur results
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(a) LR Bicubic (b) EDSR (c) EDSR - Blur  (d) ESRGAN (e) ESRGAN - BL
64x64>256x256 30.66 / 0.83 27.05 / 0.77 2594 / 0.70 19.59 / 0.44

(f) SwinIR (g) SwinlR - Blur (h) DGv2-Inc. (i) DGv2-I-Bl. (j) DGv2-I-Au.
30.76 / 0.84 28.63 / 0.82 29.45 / 0.92 28.45 / 0.92 29.24 / 0.92

(k) DGv2-Swinv2 (I) DGv2-S2-Bl.  (m) DGv2-S2-Au. (n) PRLMU - CBL. (0) NAFNet

29.59 / 0.92 27.98 / 091 29.78 / 0.92 25.25 / 0.73 29.76 / 0.78
(p) NAENet - Blur (q) HAT (r) HAT - Blur (s) HATNAF (t) HATNAF - Bl
29.61 / 0.79 32.47 / 0.87 29.21 / 0.81 32.06 / 0.86 28.56 / 0.80

(u) HR Image
256x256

Figure 6.3: BUSI results
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(a) LR Bicubic (b) EDSR (c) EDSR - Blur  (d) ESRGAN (e) ESRGAN - BL
64x64>256x256 2741 / 0.73 30.27 / 0.82 25.98 / 0.70 26.73 / 0.68

(f) SwinIR (g) SwinlR - Blur (h) DGv2-Inc. (i) DGv2-I-Bl. (j) DGv2-I-Au.
27.45 / 0.73 30.64 / 0.83 26.68 / 0.86 27.55 / 0.90 26.57 /0.86

(k) DGv2-Swinv2 (I) DGv2-S2-Bl.  (m) DGv2-S2-Au. (n) PRLMU - CBL. (0) NAFNet

26.99 / 0.87 28.84 / 0.91 26.98 / 0.86 29.34 / 0.81 27.28 / 0.72
(p) NAENet - Blur (q) HAT (r) HAT - Blur (s) HATNAF (t) HATNAF - Bl
29.11 / 0.76 28.72 / 0.77 32.16 / 0.85 28.71 / 0.76 32.09 / 0.85

(u) HR Image
256x256

Figure 6.4: BUSI Blur results
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Figure 6.6. Since it does not make sense to compare the PSNR and SSIM of the actual
super-resolution results since we do not have any reference as ground truth of the real
super-resolved images, we only present the visual results. A detailed difference between
a bicubic-trained model and blur-trained model reconstruction from the original can be
seen at Figure 6.7.

6.5 Discussion

These results show the following points:

* Models tend to be decisive in terms of metrics (e.g., in all conditions, HAT worked
better than DeblurGANV?2).

HAT and HAT-NAF performed better than PRLMU on the CCABIlur dataset.

When comparing the CCA-Blur trained models, HAT and HATNAF worked
better than PRLMU in the BUSI-Blur Dataset.

If blur degradation exists on the dataset tested, blur-trained models report better
results; the same applies the other way around.

Models tend to work better with their datasets (blur-trained model with blur
dataset, bicubic-trained model with bicubic dataset).

Even though blur-fed models tend to create sharper and visually pleasing results,
such as shown in Figure 6.7, these may lead to artifacts that need to be checked
with the expert/clinician thoroughly.

Generally, if the dataset trained and tested are the same, it performs better than
the counterpart (e.g., CCA-trained models tend to work better on CCA).
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(a) EDSR

(e) SwinIR

(i) DGv2-Inc. - Aug

(m) PRLMU - CCABL.

(q) HAT - Blur

(b) EDSR - Blur (c) ESRGAN

(f) SwinIR - Blur (g) DGv2-Inception

(j) DGv2-Swinv2 (k) DGv2-5v2 - Blur

(n) NAFNet (o) NAFNet - Blur

(r) HATNAF

Figure 6.5: CCA results without ground truth

(d) ESRGAN - Blur

(h) DGv2-Inc. - Blur

(1) DGv2-5v2 - Aug

(p) HAT

(s) HATNAF - Blur
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(a) EDSR

(e) SwinIR

(i) DGv2-Inc. - Aug

(m) PRLMU - Blur

(q) HAT - Blur

(b) EDSR - Blur (c) ESRGAN

(f) SwinIR - Blur (g) DGv2-Inception

(j) DGv2-5v2 (k) DGv2-5v2 - Blur
(n) NAFNet (o) NAFNet - Blur
(r) HATNAF

Figure 6.6: BUSI results without ground truth

(d) ESRGAN - Blur

(h) DGv2-Inc. - Blur

(1) DGv2-5v2 - Aug

(p) HAT

(s) HATNAF - Blur
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(a) Original Image vs. HAT model SR

(b) Original Image vs. HAT-Blur model SR

Figure 6.7: Achieving real SR in the details of the images with different types of models.
On the left part, the original image is zoomed via Apple Preview. The right
part is the rendering of that area via SR models.
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By looking at these results, we can conclude some key points. First, by applying SOTA
methods in natural images such as HAT, NAFNet, our HAT-NAF mixture, or even
SwinlR to the ultrasound images, we achieved comparably better or similar results
regarding PSNR and SSIM. Using a deblurring network to realize the noise/blur
patterns to fine-tune the image, our proposal also works as intended since it performs
enough, especially with the NAFNet architecture.

Despite the claims of SRMD and PRLMU, we have seen that in the datasets of
bicubic degradation, the models trained for bicubic degradation and for the datasets
of blur degradation, the models trained for blur degradation worked better in terms
of metrics, even though blur degradation models produced subjectively visually more
pleasing results, due to the sharpening effect, which can turn into an issue that needs
to be checked by experts since it could cause artifacts. Therefore, if SR models are
trained with the expected degradation model, they tend to perform better instead
of degradation-aware degradation optimizations. These results lead to the following
question, "how a real super-resolved image be retrieved"? Different solutions can be
given, especially with the help of raw signal processing; better resolutions in terms of
different types of resolutions, such as axial and lateral resolutions in the spatial domain,
can be achieved. For example, by using the same phantom, the two different ultrasound
devices can take an ultrasound B-mode image, and the style can be transferred from
high quality one to low quality one, or by applying the physics of ultrasound, the same
strategy can be done in one ultrasound device, such as using beam-forming techniques
can be produced, then by utilizing these deep learning models, new SR images by only
using new LR images can be reconstructed. Also, if enough dataset and computational
power exist, diffusion-based denoising to synthesize LR images can be done. Another
future work might be discovering a degradation learning from ultrasound frequency
compounding. Therefore, learning-based SR models can realize and reconstruct better
super-resolved images.

Finally, if no external super-resolution solutions exist to transfer the degradation
style, by depending on the simulation of SR by having an LR-HR relationship for the
taken images, such as in this thesis, a real super-resolved image can be generated.
Since no ground truth exists for upscaled images, it’s hard to say what is expected.
However, models fed with blur-degraded images tend to reconstruct sharpened images
with some visual artifacts, such as rings around issues discussed in Figure 2.14. In
contrast, models fed with bicubic degraded images tend to reconstruct natural looking
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ultrasound (US) images compared to those fed with blur-degraded models, but with
a trade-off of more blurry images. Either way, these images will look better than just
bicubic upscaled images. When used with a supervision of an expert, we hope these
images will be beneficial for ultrasound imaging.
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Abbreviations

GAN generative adversarial network
SR super resolution

CNN convolutional neural network
HR high resolution

LR low resolution

PSNR peak signal-to-noise ratio
SSIM structural similarity

PSF point spread function

A-mode amplitude-mode

B-mode brightness-mode

M-mode motion-mode

NLP natural language processing
US ultrasound

MSE mean squared error

EDSR Enhanced Deep Residual Networks for Single Image Super-Resolution

SRGAN Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network
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Abbreviations

DECUSR Deep Convolutional Neural Network for Ultrasound Super Resolution
HAT Hybrid Attention Transformer

Swin Shifted Window Transformer

SwinIR Image Restoration Using Swin Transformer

PRLMU Progressive Residual Learning with Memory Upgrade for Ultrasound Image
Blind Super-Resolution

SRMD Super-Resolution Network for Multiple Degradations

IKC Iterative Kernel Correction for Ultrasound Image Super-Resolution
CCA-US common cartoid artery ultrasound

BUSI Breast Ultrasound Images Dataset

FPN Feature Pyramid Network

NN nearest neighbor

ZSSR Zero-Shot Super-Resolution using Deep Internal Learning

USSSCSR Perception Consistency Ultrasound Images Super-Resolution via Self-Supervised
CycleGAN

ICAB Improved Channel Attention Block
NAFNet Nonlinear Activation Free Network
SOTA state-of-the-art

CA Channel Attention Module

GELU Gaussian Error Linear Unit

SRGAN Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network
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Abbreviations

ESRGAN Enhanced Super-Resolution Generative Adversarial Networks
SRMD Super-Resolution Network for Multiple Degradations

EDSR Enhanced Deep Residual Networks for Single Image Super-Resolution
SCA Simplified Channel Attention

RRDB Residual in Residual Dense Block
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